Long-term erosion monitoring on Niagara Escarpment watercourses

Anna C.J. Howes, Aquafor Beech Ltd.
Roger T.J. Phillips, Aquafor Beech Ltd. and Western University
Long Term Erosion Monitoring

- Used to assess impacts from land development (i.e. success of SWM measures)
- Important to distinguish between natural variations and development-related impacts
- How much natural variability is expected?
Overview

1. Monitoring methodology
2. Site classification
3. Site statistics
4. Target thresholds
5. Conclusions
Overview

1. Monitoring methodology
2. Site classification
3. Site statistics
4. Target thresholds
5. Conclusions
Site Information

- 20 sites
- 4 to 10 cross-sections per site
- 135 cross-sections total
- 3 surveys per year (spring, summer, fall)
- 6 years of data
Survey Control
Survey Control
Data Collection
Cross-Section Analysis

• Area

• Width

• Depth
Overview

1. Monitoring methodology

2. Site classification

3. Site statistics

4. Target thresholds

5. Conclusions
Site Classification

- Cobble and fine grain
- Fine grain dominated
- Cobble dominated
- Queenston shale and gravel
Overview

1. Monitoring methodology
2. Site classification
3. Site statistics
4. Target thresholds
5. Conclusions
Site Statistics

Mean

\[\mu = \frac{\sum_{i=1}^{N} X_i}{N} \]

Coefficient of Variance

\[C_v = \frac{\sigma}{\mu} \]

Standard Deviation

\[\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} \]
Cross-Sectional Area Standardized Data
Field Site Average Standardized by Monitoring Period Average

- ◇ fine-grained
- • cobble
- × Queenston shale

Monitoring Events, 2010-2015 (3 events per year)
Spatial versus Temporal Variability

Coefficient of Variation (CoV)

Average Spatial Variability (between cross-sections)

<table>
<thead>
<tr>
<th>CoV Data</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Max / Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Sectional Area</td>
<td>31%</td>
<td>15%</td>
<td>89% / 5%</td>
</tr>
<tr>
<td>Bankfull Width</td>
<td>21%</td>
<td>10%</td>
<td>54% / 6%</td>
</tr>
<tr>
<td>Bankfull Depth</td>
<td>24%</td>
<td>10%</td>
<td>73% / 9%</td>
</tr>
</tbody>
</table>

Average Temporal Variability (between seasonal monitoring events)

<table>
<thead>
<tr>
<th>CoV Data</th>
<th>All Events</th>
<th>Annual Averages</th>
<th>Seasonal Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Sectional Area</td>
<td>5.7%</td>
<td>4.5%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Bankfull Width</td>
<td>5.0%</td>
<td>3.7%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Bankfull Depth</td>
<td>5.2%</td>
<td>4.3%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

Expected Range:

- All Stream Classes: 5 – 6%
- All Parameters: 4 – 5%
- Seasonal Only: 1 – 2%

Note: Spatial variability is an order of magnitude larger than the seasonal variability!
Variance by Stream Class
CoV for Each Cross-Section through Time

Coefficient of Variance, CoV

Area
- cobble
- fine-grain
- shale

Width
- cobble
- fine-grain
- shale

Depth
- cobble
- fine-grain
- shale

All Seasonal Data

Annual Average Data

\[t\text{-tests: Is the mean CoV statistically different between the stream classes?} \]
Differences in Variance between Stream Classes

p-values (two-tail) for t-tests assuming unequal variances (log-transformed data)
95% Confidence for Significance (p-value < 0.05)

<table>
<thead>
<tr>
<th></th>
<th>Cross-Sectional Area</th>
<th>Bankfull Width</th>
<th>Bankfull Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Seasonal Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobble ≠ Queenston</td>
<td>0.022</td>
<td>0.984</td>
<td>0.067 ~</td>
</tr>
<tr>
<td>Cobble ≠ Fine-grained</td>
<td>0.019</td>
<td>0.040</td>
<td>0.897</td>
</tr>
<tr>
<td>Fine-grained ≠ Queenston</td>
<td>0.567</td>
<td>0.045</td>
<td>0.156</td>
</tr>
</tbody>
</table>

Annual Data			
Cobble ≠ Queenston	0.043	0.408	0.044
Cobble ≠ Fine-grained	0.374	0.349	0.477
Fine-grained ≠ Queenston	0.611	0.156	**0.031**

Observations

Queenston and fine-grained variances are statistically different from cobble for cross-sectional area

Differences in variance of fine-grained are explained by *seasonal variability* in bankfull width

Differences in variance of Queenston are largely explained by variance in bankfull depth (bed dynamics), which is NOT as sensitive to seasonal variability
Overview

1. Monitoring methodology
2. Site classification
3. Site statistics
4. Target thresholds
5. Conclusions
Erosion Target Thresholds
to detect signals of development impacts

Cross-sectional area (typically ± 20% threshold)

<table>
<thead>
<tr>
<th>Cross-Sectional Area</th>
<th>Avg. CoV</th>
<th>95th Percentile</th>
<th>99th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobble</td>
<td>4%</td>
<td>7%</td>
<td>11%</td>
</tr>
<tr>
<td>Fine-grained</td>
<td>7%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>Queenston</td>
<td>7%</td>
<td>15%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Bankfull depth (typically ± 20% threshold), substrate aggradation/degradation

<table>
<thead>
<tr>
<th>Bankfull Depth</th>
<th>Avg. CoV</th>
<th>95th Percentile</th>
<th>99th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobble</td>
<td>4%</td>
<td>7%</td>
<td>11%</td>
</tr>
<tr>
<td>Fine-grained</td>
<td>5%</td>
<td>15%</td>
<td>17%</td>
</tr>
<tr>
<td>Queenston</td>
<td>7%</td>
<td>21%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Typical 20% thresholds, may overestimate cobble, but OK for fine-grained and Queenston.

Local cross-section exceedances are common in the Queenston sites, but site averages typically remain below the erosion target threshold.
Overview

1. Monitoring methodology
2. Site classification
3. Site statistics
4. Target thresholds
5. Conclusions
Stream Morphology Monitoring Recommendations
to detect signals of development impacts

• Spatial variability is greater than temporal variability
 – Monitor more cross-sections rather than more often

• Fine-grained head water channels see higher seasonal variation
 – Multiple measurements annually are useful for these sites
 – Annual monitoring (once per year) may be sufficient for cobble and Queenston shale sites

• Variability differs by channel type
 – A “one-size-fits-all” approach to target thresholds may under-estimate or over-estimate natural variability
 – Classification by alluvial bed material type is useful
 – Monitoring schemes and target thresholds should reflect the expected natural variation of different stream types