River Bank Rehabilitation in Sand-Bed Channels: A Case Study of the Pine River

Ahmed Siddiqui1, Paul Villard1, Fred Dobbs2

1GEO Morphix Ltd., Milton, Canada
2Nottawasaga Valley Conservation Authority, Utopia, Canada

5th International Conference on Natural Channel Systems
September 26-27, 2016, Niagara Falls, Ontario
Outline:

• Unique characteristics of sand-bed rivers
• Issues with working in sand
• Use of alternative bioengineering methods
• Assessing stability
• Case Study: Pine River
Sand-Bed Channels:

Characteristics:
- Mobile bed load
- Highly erodible substrate
- Naturally adjusting planform

Issues with typical rehabilitation:
- Outflanking
- Undermining
- Shifting and sinking

Factors influencing stability:
- Riparian vegetation
- Presence of woody material
Sand-Bed Channels

Legend
Channel banks in:
- 1971
- 1978
- 1983
- 2006
- 2012
- 2022

Meander position in:
- 1971
- 1978
- 1983
- 2006
- 2012
- 2022

Meander A
PROPOSED OUTFALL

Meander B
PROPOSED OUTFALL

Meander C
PROPOSED OUTFALL

Predicted Meander Positions

Typical Rehabilitation
Alternative Bioengineering Methods

Large woody debris
 • Examples: root wads, conifer bank treatment

Advantages:
 • Increased roughness at bank
 • Reduce velocity and shear stresses
 • Deformable
 • Easy to install
 • Traps sediment
 • Floats
Determining Restoration Methods

Key Factors to Consider:

- Planform evolution and systematic adjustments
- Channel morphology
- Extent of erosion
- Resident aquatic species
- Type of woody material
- Configuration of treatment
- Potential success of supplemental planting
Determining Restoration Methods

Morphological and Hydrological Investigation

• Background review: historical assessments; hydraulics and hydrology
• Field investigation: geomorphological assessments and topographic surveys

Technical Analyses:

• Migration rates
• Erosion threshold calculation
• Force balance analysis
• Depth of scour analyses
Case study: Pine River
Existing Conditions
Proposed Restoration Method
Force Balance Analysis

1) Factor of safety with respect to Buoyancy

\[FS_B = \frac{W_{BL}}{F_B} \]

Stable when \(FS_B > 1 \)

Here: \(FS_B = 40 \)

2) Factor of safety with respect to Sliding:

\[FS_S = \frac{F_{FS}}{F_D} \]

Stable when \(FS_S > 1 \)

Here: \(FS_S = 4 \)

* Anchoring treatment provides additional stability
Shear and Meander Migration

• Maximum shear at meander bend
 • Determine maximum boundary shear for the proposed cutoff channel

• Meander Migration
 • Calculate rates of meander migration for the proposed cutoff channel
Implementation and Construction

- Timing: window for in-stream work; window for breeding season for migratory birds
- Delineate construction limits protecting trees, sediment erosion control to protect water quality and aquatic habitat
- Isolate area to work in dry conditions; pump and filter water from creek over vegetated area
- Fish rescue in isolated work area
Post-Construction – Fall, 2015
Post-Construction – Summer, 2016
THANK YOU!