Using two-dimensional hydraulic modeling to quantitatively assess fish habitat improvements
Nick Hodges and Joanna Eyquem

5th International Conference on Natural Channel Systems
September 27, 2016

Sustainable River Management

2D Hydraulic Modeling

River 2D

a) Developments in 2-D Modeling
b) Case Study: Humber River
c) Application to Fisheries Habitat Improvements
d) Application and Alternatives

HEC-RAS 1D: The Previous Industry Standard

- First version released by USACE, July 1995.
- Widespread use in flood risk and erosion control studies

- Depth and width averaged results - does not reflect velocity and shear stress variations within the cross-section.
- Limits use for geomorphological and physical habitat studies

Sustainable River Management

2D Hydraulic Modeling

River 2D

- Several 2D modeling packages have been available, going back over 40 years…

... UK Environment Agency tested 14 packages in 2010…

... and the technology is still developing.

River 2D

- 2D hydrodynamic model intended for use on natural streams and rivers
- Developed at the University of Alberta through funding from DFO
- Developed from 2001 – last updated 2010
- Tailored for Aquatic Habitat Assessment

First version released by USACE, July 1995.
Widespread use in flood risk and erosion control studies

Depth and width averaged results - does not reflect velocity and shear stress variations within the cross-section.
Limits use for geomorphological and physical habitat studies

2D Hydrodynamic model intended for use on natural streams and rivers
Developed at the University of Alberta through funding from DFO
Developed from 2001 – last updated 2010
Tailored for Aquatic Habitat Assessment

UK Environment Agency tested 14 packages in 2010…
... and the technology is still developing.
Case Study: Humber River

- July 8, 2013 – A high intensity precipitation event occurred in the Greater Toronto Area.
- Rip-rap temporary coffer dam at the Humber River rail crossing was entrained and deposited immediately downstream in the channel.
- Concern regarding potential bank erosion.
- AECOM retained to determine if, and when, the deposited material would be transported downstream.
Hydrodynamic Modelling Inputs

- Terrain data (bathymetry, channel survey, LiDAR)
 - Finer the resolution the better, represented by nodes
- Cross-sections 2-5m apart for this study
- Substrate characterization
 - Required for calibration and habitat assessment
- Water surface elevations
 - Required as an input variable and for calibration
- Hydrometric data from a Water Survey of Canada gauge ~1.5 km downstream of study site to determine relevant flows

Conducted 18 flow simulations ranging from 2.6 m3/s (summer base flow) to 160 m3/s (~5 year return flow)

Outputs

How It Works

Creates mesh (Triangulated Irregular Network (TIN), from measured survey points. Hydraulic computations are solved for the nodes.

Geomorphological Analysis Application

- Compared modelled bed shear stresses to critical shear stress of deposited material:
 - Deposit A: starts to become entrained at 160 m3/s (~5 year return event)
 - Deposit B: starts to become entrained at 20 m3/s and the majority of the deposit is entrained during the 2 year flow event (~110 m3/s)

-Verified potential influence on bank erosion:
 - At base to mean annual flows, some velocity vectors point towards the river banks as Deposit B acts as a medial bar, but flows do not have the capacity to cause excess bank and bed erosion.
 - During higher flow conditions, the deposited material is submerged and the velocity vectors are pointed in the downstream direction.

a) Developments in 2-D Modeling
b) Case Study: Humber River
c) Application to Fisheries Habitat Improvements
d) Application and Alternatives
River 2D and PHABSIM

- Physical Habitat Simulation Model (PHABSIM): within River 2D
- PHABSIM developed by US Geological Survey
- Simulates relationship between streamflow and physical habitat using hydraulic parameters and habitat suitability criteria
- Output: Weighted Usable Area (WUA) offers quantitative assessment of habitat quality

PHABSIM: Inputs, Variables and Outputs

- Input: Velocity, Depth, Substrates
- Variables: Habitat Suitability Index (HSI) (e.g. life stages)
- Output: Weighted Usable Area (WUA)

PHABSIM: Inputs, Variables and Outputs

Example: Combined Suitability Mapping

Example: Changing WUA with Discharge

Example: Mapping Outputs

Knowledge Gaps

- HSI’s are required and would need to be developed for each species, and their life stages.
- PHABSIM approach does not take into account all variables (e.g. Temperature, Vegetation).
Applications:

- **Refinement** of channel design based on spatial modelled outputs
- **Quantifying** positive or adverse impacts on fish habitat
 - Stream Restoration/Habitat Enhancement;
 - Post Construction Monitoring;
 - Permitting – Species at Risk/Overall Benefit;
 - Species Recovery Initiatives.

Alternatives: Limitations of River 2D

- Relatively small number of possible grid cells in model
 - Small reach capability OR
 - Model resolution has to be degraded
- Not appropriate for steep gradient channels
- Model instability
- Less widely applied by hydraulic specialists than HEC-RAS (QA/QC more challenging)

Alternatives: HEC-RAS 5.0 2D

- Officially Released March 4th, 2016
- Public Domain
- No License Fees

New Features:

- 2D and Combined 1D/2D Unsteady Flow Modeling
- New RAS Mapper (to ultimately replace HEC-GeoRAS)
Key Messages

- 2D modeling offers significant opportunities for refined and quantitative assessment of changes in physical fish habitat.

- Wider application should be actively encouraged to develop our skill base in Canada.

- True multidisciplinary project teamwork is required.